Refining Ranked Retrieval Results for Legal Discovery Search Through Supervised Rank Aggregation

نویسندگان

  • Brian Almquist
  • Padmini Srinivasan
چکیده

We propose and evaluate a data mining system that uses a set of document features describing each document in the context of partially evaluated ranked results. We find our system to be competitive with existing metasearch ranking strategies for prioritizing the review of evidence for legal relevance. Résumé : Nous proposons et évaluons un système de fouille de données basé sur une série de descripteurs de documents décrivant chaque document dans un contexte d’évaluation partielle des résultats classés. Nous concluons que notre système est concurrentiel par rapport aux stratégies existantes de classement des métarecherches pour la priorisation de l’examen des preuves en matière de pertinence juridique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank Aggregation for Similar Items

The problem of combining the ranked preferences of many experts is an old and surprisingly deep problem that has gained renewed importance in many machine learning, data mining, and information retrieval applications. Effective rank aggregation becomes difficult in real-world situations in which the rankings are noisy, incomplete, or even disjoint. We address these difficulties by extending sev...

متن کامل

Assisted query formulation for multimodal medical case-based retrieval

Medical information retrieval systems support health care experts in diagnostic and treatment decisions through the management of large amounts of clinical data. However, the ever growing data produced in medical environments and the proficiency of non-professional users pose several challenges to a retrieval system. In this paper, we propose a medical retrieval system, supporting semantic mult...

متن کامل

A Framework for Unsupervised Rank Aggregation

The need to meaningfully combine sets of rankings often comes up when one deals with ranked data. Although a number of heuristic and supervised learning approaches to rank aggregation exist, they generally require either domain knowledge or supervised ranked data, both of which are expensive to acquire. To address these limitations, we propose a mathematical and algorithmic framework for learni...

متن کامل

Learning to Rank Academic Experts in the DBLP Dataset

Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people’s activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interes...

متن کامل

Review of ranked-based and unranked-based metrics for determining the effectiveness of search engines

Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011